Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Annals of Dermatology ; : 22-29, 2016.
Article in English | WPRIM | ID: wpr-223555

ABSTRACT

BACKGROUND: Many inflammatory mediators, including various cytokines (e.g. interleukins and tumor necrosis factor [TNF]), inflammatory proteases, and histamine are released following mast cell activation. However, the endogenous modulators for mast cell activation and the underlying mechanism have yet to be elucidated. Endogenous cannabinoids such as palmitoylethanolamide (PEA) and N-arachidonoylethanolamine (anandamide or AEA), were found in peripheral tissues and have been proposed to possess autacoid activity, implying that cannabinoids may downregulate mast cell activation and local inflammation. OBJECTIVE: In order to investigate the effect of cannabinoid receptor-1 (CB1R) agonists on mast cell activation, AEA-derived compounds were newly synthesized and evaluated for their effect on mast cell activation. METHODS: The effects of selected compounds on FcepsilonRI-induced histamine and beta-hexosaminidase release were evaluated in a rat basophilic leukemia cell line (RBL-2H3). To further investigate the inhibitory effects of CB1R agonist in vivo, an oxazolone-induced atopic dermatitis mouse model was exploited. RESULTS: We found that CB1R inhibited the release of inflammatory mediators without causing cytotoxicity in RBL-2H3 cells and that CB1R agonists markedly and dose-dependently suppressed mast cell proliferation indicating that CB1R plays an important role in modulating antigen-dependent immunoglobulin E (IgE)-mediated mast cell activation. We also found that topical application of CB1R agonists suppressed the recruitment of mast cells into the skin and reduced the level of blood histamine. CONCLUSION: Our results indicate that CB1R agonists down-regulate mast cell activation and may be used for relieving inflammatory symptoms mediated by mast cell activation, such as atopic dermatitis, psoriasis, and contact dermatitis.


Subject(s)
Animals , Mice , Rats , Basophils , beta-N-Acetylhexosaminidases , Cannabinoid Receptor Agonists , Cannabinoids , Cell Line , Cytokines , Dermatitis, Atopic , Dermatitis, Contact , Histamine , Immunoglobulin E , Immunoglobulins , Inflammation , Interleukins , Leukemia , Mast Cells , Peptide Hydrolases , Psoriasis , Skin , Tumor Necrosis Factor-alpha
2.
Journal of Cancer Prevention ; : 185-192, 2015.
Article in English | WPRIM | ID: wpr-112062

ABSTRACT

BACKGROUND: Withania somnifera (known as Ashwagandha) is a medicinal plant used in the ayurvedic medicines in India. Withaferin-A, a withanolide derived from the leaf extract of W. somnifera, has been reported to exhibit anti-tumor activity against various cancer cells, such as leukemia, breast cancer and colon cancer cells. METHODS: We investigated the anti-cancer effects of withaferin-A on the proliferation and migration of human colorectal cancer (HCT116) cells. And we evaluated the effects of withaferin-A on the transcriptional activity of STAT3 and the growth of HCT116 cells in xenograft mouse tumor model. RESULTS: In the present study, we found that withaferin-A inhibited the proliferation and migration of HCT116 cells in a concentration-dependent manner. Treatment of HCT116 cells with withaferin-A attenuated interleukin-6-induced activation of STAT3, which has been implicated in the development and progression of colon cancer. To examine the effect of withaferin-A on HCT116 cells proliferation in vivo, we generated HCT116 cells xenograft tumors in Balb/c nude mice and treated the tumor bearing mice with or without withaferin-A intraperitoneally. Treatment with withaferin-A exhibited significant decrease in the volume and weight of tumors as compared to untreated controls. CONCLUSIONS: The present study suggests that withaferin-A holds the potential to be developed as a small molecule inhibitor of STAT3 for the treatment of HCT116.


Subject(s)
Animals , Humans , Mice , Breast Neoplasms , Colon , Colonic Neoplasms , Colorectal Neoplasms , HCT116 Cells , Heterografts , India , Leukemia , Mice, Nude , Plants, Medicinal , STAT3 Transcription Factor , Withania
3.
Experimental & Molecular Medicine ; : 220-228, 2008.
Article in English | WPRIM | ID: wpr-52233

ABSTRACT

Extracellular ATP (exATP) has been known to be a critical ligand regulating skeletal muscle differentiation and contractibility. ExATP synthesis was greatly increased with the high level of adenylate kinase 1 (AK1) and ATP synthase beta during C2C12 myogenesis. The exATP synthesis was abolished by the knock-down of AK1 but not by that of ATP synthase beta in C2C12 myotubes, suggesting that AK1 is required for exATP synthesis in myotubes. However, membrane-bound AK1beta was not involved in exATP synthesis because its expression level was decreased during myogenesis in spite of its localization in the lipid rafts that contain various kinds of receptors and mediate cell signal transduction, cell migration, and differentiation. Interestingly, cytoplasmic AK1 was secreted from C2C12 myotubes but not from C2C12 myoblasts. Taken together all these data, we can conclude that AK1 secretion is required for the exATP generation in myotubes.


Subject(s)
Animals , Mice , Adenosine Triphosphate/biosynthesis , Adenylate Kinase/metabolism , Cell Line , Extracellular Space/metabolism , Isoenzymes/metabolism , Muscles/cytology
4.
Experimental & Molecular Medicine ; : 476-485, 2004.
Article in English | WPRIM | ID: wpr-226073

ABSTRACT

Mitochondrial biogenesis is known to accompany adipogenesis to complement ATP and acetyl-CoA required for lipogenesis. Here, we demonstrated that mitochondrial proteins such as ATP synthase alpha and beta, and cytochrome c were highly expressed during the 3T3-L1 differentiation into adipocytes. Fully-differentiated adipocytes showed a significant increase of mitochondria under electron microscopy. Analysis by immunofluorescence, cellular fractionation, and surface biotinylation demonstrated the elevated levels of ATP synthase complex found not only in the mitochondria but also on the cell surface (particularly lipid rafts) of adipocytes. High rate of ATP (more than 30 micrometer) synthesis from the added ADP and Pi in the adipocyte media suggests the involvement of the surface ATP synthase complex for the exracellular ATP synthesis. In addition, this ATP synthesis was significantly inhibited in the presence of oligomycin, an ATP synthase inhibitor, and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an ATP synthase uncoupler. Decrease of extracellular ATP synthesis in acidic but not in basic media further indicates that the surface ATP synthase may also be regulated by proton gradient through the plasma membrane.


Subject(s)
Animals , Humans , Mice , Adenosine Triphosphate/analysis , Adipocytes/enzymology , Cell Differentiation/physiology , Cell Membrane/chemistry , Cells, Cultured , Membrane Microdomains/chemistry , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/analysis
SELECTION OF CITATIONS
SEARCH DETAIL